

AMSTERDAM INTERNATIONAL WATER WEEK

Demonstrating synergy between H₂ production and wastewater treatment at WWTP Hessenpoort

AIWW 8 November 2023 Round 6 Resource recovery Tony Flameling Tonyflameling@wdodelta.nl

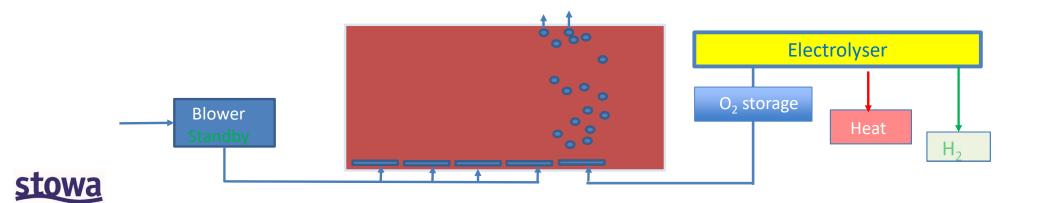
co authors Rob van der Lans (TU Delft), Berend Reitsma (Tauw)

H₂ is one of the future energy solutions

Making H₂ with an electrolyser: 9 kg H₂O + electricity \rightarrow 1 kg H₂ + 8 kg O₂ + heat

What to do with off-gas O_2 ?

%O₂ > 99.99% **= Pure Oxygen (PO)** Pressure 0-10 bar (depending on electrolyser)



Using Pure Oxygen (PO) from H₂

Aeration with air not very efficient: $21\%O_2 + 79\%N_2 + 1\%$ other gasses

- Aeration consumes > 50% of all energy for wastewater treatment
- Use "Off-gas O₂" (PO) can reduce this energy consumption to zero
- Maintain normal aeration with blowers for redundancy/fall back

Fases of research

Fase 1 testing PO in a small scale reactor with a fine bubble diffuser (2021)

Fase 2 testing PO in a section of the WWTP Hessenpoort (2022)

Fase 3 DEMO Fase (2024-2028):

- electrolyser on site
- continues PO dosage
- close monitoring of pH and N20

Topics of research

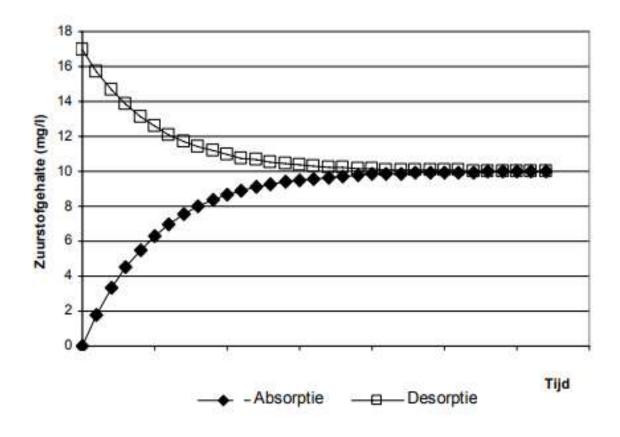
When using PO instead of air, is there a difference in?

- 1) Oxygen transfer from gas to water
- 2) N_2O emissions from the activated-sludge tank
- 3) pH in the activated-sludge tank
- 4) Other sides effects;
 - mixing in the activated-sludge tank
 - deterioration of diffusers
- 5) Safety issues

Oxygen transfer tests

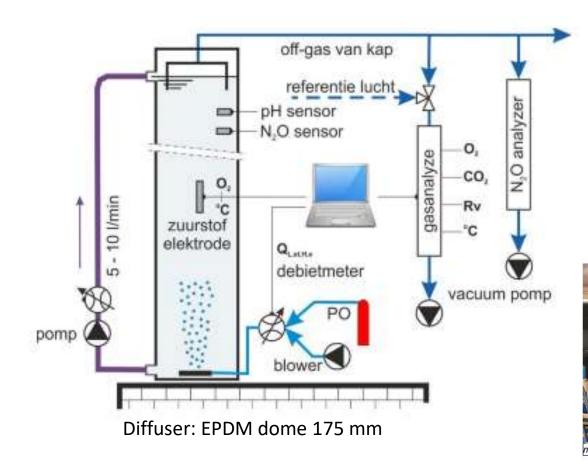
Method

Adsorption en desorption test German standard DWA-M 209


Adsorption to test PO Desorption to test air

Measurement

Alpha – resistance transport gas-water in dirty water Standard Specific Oxygen Transfer Rate (SSOTR) Standard Specific Oxygen Transfer Efficiency (SSOTE)


Small scale reactor (fase 1) 10 tests in drinking water 4 test in activated sludge water


Section of a WWTP (fase 2) 4 test in activated sludge water

Fase 1 testing PO in a small scale reactor

Fase 1 testing PO in a small scale reactor

Results (selection of 4 tests, in total 14 tests where done)

Smal scale reactor	Gasload per difusser Nm ³ per element per hour	alpha	Specific Oxygen Transfer Rate (SSOTR) (gO ₂ /Nm ³ .m)	Specific Oxygen Transfer Efficiency (SSOTE) (%O ₂ of total O ₂)
PO drinking water	0.9	1.0	114	36
Air drinking water	0.9	1.0	25	38
PO activated sluge	1.0	0.69	113	36
Air activated sludge	1.0	0.44	25	37

Test	SSOTR_air/SSOTR_PO	Ratio
Drinking water	114/25	4.6
Activated sludge	113/25	4.6

Fase 1 testing PO in a small scale reactor

Results

Test	Number of test	Average ratio SSOTR_PO/SSOTR_air
Drinkwater PO and air	10	4.8
Activated sludge PO and air	4	4.6

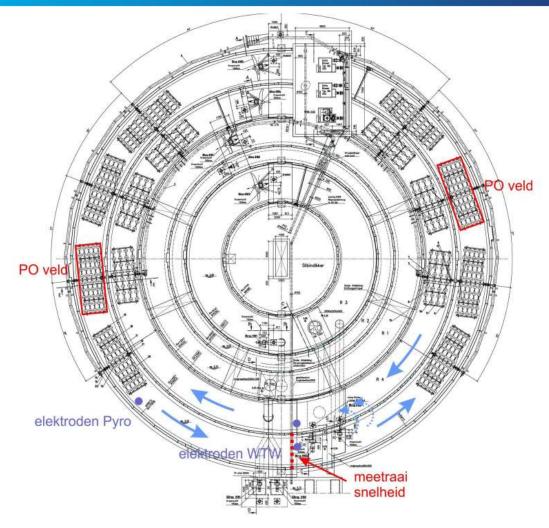
Results fit with the theoretical expectations of Henry's law

Air 20.8% O₂ PO 99.99% O₂

PO/Air = 99.99 / 20.8 => 4.8

1		P?	
Henry 20°C for	oxygen	4,09E+09	Pa
used pressure		1,00E+05	Pa
atmospheric pressure		1,01E+05	Pa
oxygen content air		20,95	%
partial pressure	air at 1 bar	20950	Pa
at 1 atm		4389	Pa
molar mass wat	ter	0,018	kg/mol
molar mass oxygen		0,032	kg/mol
density water 2	0°C	998	kg/m3
saturation conc	in air at 1 bar	9,088	g/m3
at 1 atm		9,206	g/m3
saturation concentration PO		43,38	g/m3
at 1 atm		43,94	g/m3
Ratio PO/air		4,77	

Fase 2 testing PO in a WWTP section


Testsite:

- Activated sludge process
- 25.000 PE Capacity, average load 15.000 PE
- Outer ring is completely aerated
- 8 liftable racks with diffusers
 - 2 connected to PO: temporary supply from storage facility
 - 6 connected to air

4 days of testing:

STOWa

- 4 Oxygen transfer tests
- 2 performance test with influent feeding

Fase 2 testing PO in a WWTP section

Measuring :

- pH
- Dissolved Oxygen (DO)
- N₂O (gas and liquid)
- NH₄
- NO₃
- Suspended solids
- Alpha
- 24 hr sampling

Fase 2 testing PO in a WWTP section

Disconnect air supply

Last minute repairs at PO supply

Preparing the PO supply 2000 kgPO in a storage Temporary PO connections and 2 control panels

Manual control panel PO dosage

stowa

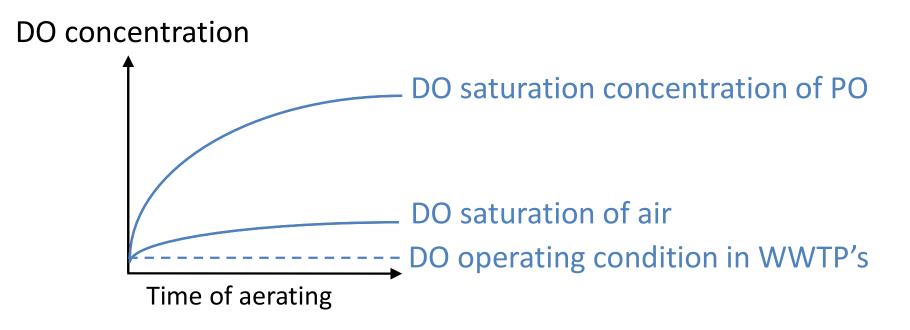
Fase 2 testing PO in a WWTP section

Liftable rack with diffusers

Cleaning of the diffusers

Fase 2 testing PO in a WWTP section

Results Oxygen transfer tests


Test	Gasload Nm ³ /diffuser.hr	Alpha	Standard Specific Oxygen Transfer Rate (SSOTR) (gO ₂ /Nm ³ .m)	Standard Specific Oxygen Transfer efficiency (SSOTE) (%O ₂ of total O ₂)
PO low gasload	1.0	0.69	96	30
Air low gasload	1.0	0.74	22	32
PO high gasload	3.3	0.74	56	17
Air high gasload	3.3	0.69	15	23

Test	SSOTR_air/SSOTR_PO	Ratio	
Low gasload	96/22	4.4	Lov
High gasload	56/15	3.6	like

Lower ratios most ikely a mixing issue

Difference in driving force PO and air

PO compared to air has a stronger driving force to dissolve

In total, with PO about 5.5x less gas is required

Other results Fase 1 and 2

<u>pH</u>

- pH drops 0.1 to 0.2 within several hours with PO aeration
- Trial was too short to fully investigate pH effect
- Decrease reversible by briefly aerating with air

<u>N₂O</u>

- Hardly any emissions were observed when running a stable process
- emissions were not higher and are most likely lower due to less stripping of N₂O

<u>Mixing</u>

- Use of PO decrease resistance for mixers
- Use of PO reduces turbulence

<u>Safety</u>

- PO lowers flammability \rightarrow no sparking devices etc
- Extra O2 gas sensors

Diffusers

PO could lead to acceleration of the aging process because of dry air

Synergy of H₂ production and WWTPs

Normal aeration of outer ring with all aeration elements

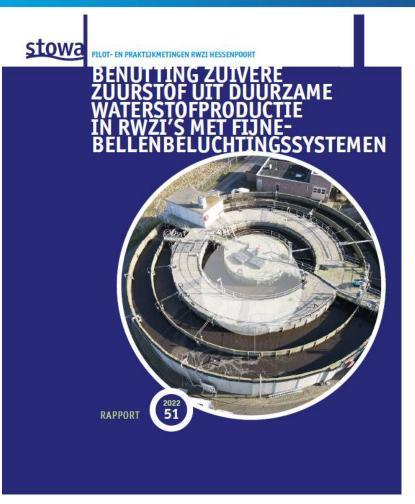
- Technically "relatively easy" conversion from air to PO
- 4 to 6 times less gas volume required
- Significant energy savings possible
- pH controllable with briefly aeration
- N₂O emissions most likely significant lower due to less stripping

PO dosage on 2 of the 8 diffuser stacks

Fase 3 DEMO Fase (2024-2028)

Topics

- Increase O₂transfer •
- Reduce N₂O •
- Control pH •
- Use heat •
- Use effluent for H₂ •



Thank you for your attention!

Further information: Tony Flameling tonyflameling@wdodelta.nl Or STOWA report 2022-51 (public download)

